전체기사 최신뉴스 GAM
KYD 디데이
오피니언 내부칼럼

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능이 인간의 성격도 바꾼다

기사입력 : 2019년10월14일 08:54

최종수정 : 2019년10월14일 08:57

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습하여, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하여 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력 센터장 등을 겸하고 있다.

 

변하지 않는 전자공학의 핵심 공식들

전자공학 전공자가 대학 2학년 때 배우는 가장 기초적인 과목이 전자기학(Electromagnetics)이라는 과목이다. 전기장과 자기장이 어떻게 발생하는지 그 원리를 배운다. 전기 에너지의 발생, 모터의 원리도 모두 여기에서 나오는 원리를 따른다. 조금 더 진행하면 공간적으로 전파하는 전자기 현상인 전자파를 해석하기도 한다.

이 전자기학의 원리에 따라 전기 또는 전자 회로가 동작하고, 그 원리에 따라 설계한다. 더 나아가면, 안테나의 설계 원리도 바로 이 전자기학에 따른다. 그러니 전기 에너지가 등장하는 2차 산업혁명부터 지금의 인공지능 4차 산업혁명은 전자기학 없이는 불가능했다고 보아도 무방하다.

김정호 교수

이처럼 전자공학의 가장 기초가 되는 전자기학도 따지고 보면 4개의 공식으로 모두 설명된다. 이 4개의 공식을 '맥스웰 방정식(Maxwell Equations)'이라고 부른다. 전기, 자기, 전자파, 발전기, 모터, 안테나의 원리 및 현상은 모두 이 방정식으로 설명이 된다.

이 4가지 공식은 3차원 공간(x, y, z)을 시간 공간(t)과 합쳐서 4차원 공간에서 푸는 2차 미분방정식이다. 그래서 구체적인 전자파 문제는 이 방정식을 4차원 공간에서 2차 미분 방정식을 푸는 문제와 같다.

예를 들어 안테나를 해석한다면 x, y, z 3차원 구조를 가진 안테나에서 GHz 단위로 변화하는 시간(t) 함수로 2차 미분방정식을 푼다. 이때 안테나 끝은 한정적이어서 경계 조건(Boundary Conditions)을 넣어서 풀면 된다.

즉, 안테나 또는 전자파 연구나 개발업무를 한다면 평생 이 4가지 방정식을 다양한 조건에서 푼다고 보면 된다. 간단한 문제는 손으로 풀지만, 복잡한 문제는 컴퓨터가 알아서 계산하고 풀어준다. 요즈음은 거의 컴퓨터로 푼다.

그래서 전자공학을 한다고 하면, 이 4가지 공식을 잘 파악하고 응용할 수 있어야 한다. 필자가 전자공학을 시작한 지 40여 년이 되어 가는데, 맥스웰 방정식은 점 하나도 변하지 않았다. 그 점이 장점이다. 꾸준히 한 분야를 파고들 수도 있다. 디지털 공학이나 컴퓨터처럼 매일 매일 기술이 바뀌지 않는다. 답답한 측면도 있지만, 꾸준한 장점도 있다.

앞으로도 맥스웰 방정식은 변화하지 않을 것이다. 그래서 전자파 전공자의 성격도 이를 따라가서 아주 편안하고 꾸준한 편이다. 인내심도 있고 이해심도 높은 편이다. 서로 아끼고 공감하고 협조도 잘 된다.

안테나 등 전자파 해석에 사용되는 맥스웰 방정식(Maxwell Equations). [출처=KAIST]

한편 전자공학의 또 다른 중요한 축이 '반도체 공학(Semiconductor Physics)'이다. 주로 대학 3학년 때 배운다. 반도체라는 물질에 불순물을 주입하고 산화막을 입히고, 포토 공정을 하면, 3차원적인 나노 구조가 된다.

이 나노 공정으로 트랜지스터를 만든다. 이들을 수백만 개 이상 접적하면 프로세서(CPU)도 되고, 메모리(DRAM)도 된다. 이 반도체에 전기를 나르고 저장하는 매개체가 바로 '전자(Electron)'다. 다르게 이야기하면, 전자 없는 반도체 없고, 반도체 없는 인공지능도 없고, 4차 산업혁명도 없다.

그런데 전자가 이와 같은 원자 크기의 반도체 공간에서 행동하는 모습은 마치 '파동(Wave)'처럼 보인다. 전자는 입자의 성질(Particle Property)과 파동의 성질을 같이 갖고 있기 때문이다.

이 파동성을 가진 반도체 속 전자 행동을 설명하는 방정식이 '슈뢰딩거 방정식(Schrodinger Equation)'이다. 전자가 물리적으로 나노 크기의 작은 공간에 가둬지면 불연속 에너지 상태를 갖는데 이 에너지를 알고 싶으면 바로 이 쉬뢰딩거 방정식을 풀면 된다. 이 방정식이 x, y, z 공간에서 2차원 미분 방정식으로 표현된다. 맥스웰 방정식과 유사하다. 그 이유는 전자파도 파동이고 전자도 파동이기 때문이다.

이렇게 반도체 속에서 전자는 규칙적인 결정 구조를 따라 파동으로 흘러간다. 이때 가질 수 있는 전자의 에너지가 어느 구간(Band)을 가진다. 이 에너지 밴드(Energy band) 이론이 반도체 물리를 설명하는 핵심 도구이다.

이처럼 반도체 물리를 연구하려면, 또는 반도체 현상을 이해하려면 슈뢰딩거 방정식을 이해해야 한다. 그런데 이 방정식도 전자공학을 시작한 40년간 한 번도 바뀌지 않았다. 아마 앞으로도 영원히 바뀌지 않을 것이다. 전자파나 반도체 물리 분야의 장점이다. 한 분야를 깊게 파고 들어갈 수 있다. 그리고 이론적 설명도 명쾌하고 멋이 있다. 강의도 그렇다.

양자 물리에서 전자의 에너지 상태를 해석하는데 사용하는 슈뢰딩거 방정식(Schrodinger Equation), [출처=KAIST]

확연히 다른 인공지능에서 사용되는 방법론

하지만 인공지능의 연구 방법론은 전자파나 반도체 물리와 상당히 다르다. 무엇보다도 정해진 방정식이 없다. 방법론에 통일된 규칙이 없고, 상황에 따라 아주 다르다. 그러니 확정된 이론도 없다. 인공지능 기계학습에 사용되는 모델에 따라 사용되는 이론이 각각 다르다.

그래서 공부하면서 명쾌하지 않다. 공부는 컴퓨터하고 메모리가 알아서 한다. 인공지능 알고리즘은 일종의 블랙박스이다. 연구나 공부를 하면 내가 블랙박스에 갇히는 느낌이 든다.

알파고에서 사용된 인공지능 알고리즘 중에 대표적인 강화학습(Reinforcement Learning)이 있다. 이 알고리즘을 간단히 설명하면, 계속해서 다양한 탐험을 하면서 시행착오를 거친다. 이러한 반복 시도를 해서 최적의 승률을 갖는 해를 구해간다. 끝없이 반복해서 경험을 쌓는다.

이 '신의 수'로 알파고가 이세돌 9단과의 승부에서 이겼다. 그래서 다양한 경우를 탐험하고 실험해보기 위해 그림으로 다양한 경우를 Tree(나뭇가지) 구조로 사용해본다. 한번 시도해 볼 때마다 나뭇가지가 늘어난다.

이렇게 이것저것 시도해보면서 승률이 높은 경우를 기록한다. 다음에 같은 상황이 생기면, 바로 이 기록에 따라 결정을 내리면 된다. 알파고는 바둑에서도 이렇게 학습한다. 이러한 다양한 시도 사례를 기존의 기보로 배우기도 하고, 컴퓨터끼리 바둑을 두면서 학습하기도 한다.

이처럼 다양한 탐험과 시도를 통해서 학습하는 방법을 간단하게 마르코프 결정 과정(Markov Decision Process)이라고 부른다.

이렇게 많은 수의 다양한 경우의 수를 실행하는 힘은 컴퓨터에 있다. 인간은 피곤하고 힘들어서 하지 못한다. 컴퓨터는 불평하지 않고 쉬지 않고 학습할 수 있기 때문이다. 이처럼 인공지능의 학습은 정해진 공식이 없이 끊임없는 시도와 승률 기록으로 최적의 해를 찾아간다.

전자파 이론이나 반도체 이론과 매우 다르다. 인공지능을 40년 연구하면 연구자의 성격도 바뀔 것 같다. 정해지는 틀이 없이 계속 탐험하고 공부하고 헤매야 할 것 같다.

인공지능 최적화에 사용되는 마르코프 결정 과정(Markov Decision Process)을 표현하는 가지 그림. [출처=KAIST]

이처럼 정해진 이론이 없이 다양한 시도를 컴퓨터 프로그램으로 구현하는 방법의 하나가 '동적 프로그래밍(Dynamic Programming)' 방법이다. 이 방법에 따르면, 목표치가 일정한 오차 범위 이내에 들어올 때까지 계속 다양한 시도를 한다.

이를 '반복 시행(Iteration Method)'이라고 한다. 쉽게 말해 뺑뺑이 도는 방법이다. 인간 대신 컴퓨터가 한다. 이때 인공지능 소프트웨어 프로그램에서 반복하는 횟수를 변수 i 또는 j로 표현하고 계속 반복한다. 그래서 탐험과 시도는 'repeat' 명령으로 계속된다. 그리고 이러한 조건으로 'if, then, until'이라는 명령어가 자주 등장한다.

i를 수백만, 수천만 번 진행하면 된다. 컴퓨터가 인간을 대신하기 때문에 인간의 수고는 적다. 이것을 한참 시행해서 일정 범위 내에 목표치가 최댓값(max)을 갖거나 최솟값(min)을 가지면 프로그램을 마친다. 이때 'end' 명령을 내린다.

인공지능 알고리즘 내에는 이러한 방식의 동적 프로그램이 많이 사용된다. 알파고 게임에서도 그렇고, 인공지능 학습과정에서도 마찬가지이다. 그렇게 보면 컴퓨터는 인간을 대신해서 고생을 많이 한다.

인공지능 강화학습에 사용되는 동적 프로그래밍(Dynamic Programming)의 예. [출처=KAIST]

인공지능이 인간의 성격도 바꾼다

이처럼 전통적인 학문 분야에서 사용하는 방법론과 인공지능에서 사용하는 방법론이 아주 다르다. 인공지능 이론과 방법은 정해진 규칙이 없고, 그때그때 모델에 따라 다르다. 최근 인공지능 공부를 하면서 맞이한 당황한 경험이다.

하나의 통합된 이론과 방법으로 인공지능 학문 전체를 아우르려는 필자의 시도는 여지없이 망가졌다. 특히 데이터로 학습하는 기계학습이 등장하면서 더욱더 그렇다. 그래서 전자파나 반도체 분야 강의보다 인공지능 기계학습 강의가 10배는 더 어렵다고 느낀다.

인공지능 분야는 앞으로도 완전히 새로운 방법론이 나타날 수 있다. 그러면 다시 공부해야 한다. 그 변혁이 인공지능 모델에서 올 수도 있고, 컴퓨터나 반도체의 혁신에서 올 수도 있다. 그래서 인공지능에서 전문가로 40년 가려면 이러한 상황을 마음속에 준비해야 한다. 정해진 것이 없이 계속 도전하고 수용해야 한다.

인공지능은 전문가의 성격도 바꿀 전망이다. 푸근하고 느긋하기보다는 편안하지 않다. 미래에는 인공지능 전문가 자체도 인공지능으로 대체될 수도 있다. 그래서 인공지능 전문가들의 연봉을 높게 주고, 잘 대우해줘야 한다.

결국 인공지능은 사람들의 두뇌활동을 대신한다. 인간의 두뇌는 점점 게을러지고, 기억력도 감퇴하고, 사고력도 저하할 수 있다. 우리는 자동차 내비게이션을 사용하면서 지도 보는 법을 잃어버렸고, 스마트폰을 쓰면서 전화번호도 기억하지 못한다. 창의적인 생각도 하지 못한다. 여기에 더해서 공학자로서 이해력, 통합력, 통찰력도 인공지능 때문에 퇴화할 것 같다. 모두 인공지능 때문이다.

 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
중앙지검장 정진우…동부 임은정 [서울=뉴스핌] 김현구 기자 = 서울중앙지검장에 정진우(52·사법연수원 29기) 서울북부지검장이 내정됐다. 검찰 2인자인 대검찰청 차장검사는 노만석(54·29기) 대검 마약·조직범죄부장(검사장)이 맡게 됐다. 법무부는 1일 대검검사급(고검장·검사장) 검사 3명에 대한 신규 보임 및 대검검사급 4명, 고검검사급(차·부장검사) 2명 등 6명에 대한 전보 인사를 단행했다. 부임 일자는 오는 4일이다. 서울중앙지검. [사진=뉴스핌 DB] 정 지검장은 국가정보원 파견 근무 이력이 있는 '공안통'으로 분류된다. 2003년 인천지검에서 검사 생활을 시작한 그는 2011년 '저축은행비리합동수사단'이 만들어지자 대검 중앙수사부로 파견돼 일했고, 이후 법무부 국제형사과장·공안기획과장, 북부지검 형사4부장검사 등을 지냈다. 그는 금융정보분석원(FIU) 심사분석실장과 창원지검 진주지청장, 중앙지검 1차장검사 등을 거친 뒤 2022년 윤석열정부에서 검사장으로 승진해 대검 과학수사부장을 지냈고, 이후 춘천지검장을 거쳐 현재 북부지검장을 역임하고 있다. 2000년 대구지검에서 검사 생활을 시작한 노 검사장은 광주지검·인천지검 특수부장검사, 중앙지검 조사2부장검사, 서울고검 차장검사, 제주지검장 등을 역임했다. 특히 서울고검 차장검사 시절 서울고검장 직무대리를 했던 그는 심우정 검찰총장의 퇴임으로 한동안 검찰총장 직무대행을 맡게 됐다.  검찰 인사와 예산을 총괄하는 법무부 검찰국장에는 성상헌(52·30기) 대전지검장이 보임됐다. 성 지검장은 서울동부지검 형사6부장검사, 대검 범죄정보2담당관, 대검 수사정보2담당관, 중앙지검 형사1부장검사, 인천지검 형사1부장검사, 동부지검 차장검사 등을 지냈다. 그는 2022년 윤석열 정부 인사에서 검사장 승진 '1순위'인 중앙지검 1차장검사를 거친 뒤 다음 해인 2023년 인사에서 검사장으로 승진해 대검 기획조정부장으로 이원석 전 검찰총장을 보좌했다. 이후 지난해 인사에서 대전지검장으로 자리를 옮겼다. 아울러 동부지검장에는 임은정(50·30기) 대전지검 중요경제범죄조사단 부장검사, 남부지검장에는 김태훈(54·30기) 서울고검 검사가 각각 임명됐다. 임 부장검사는 검찰 내부고발자를 자처하며 검찰 개혁을 강하게 주장해 온 인물이다. 특히 그는 윤석열 전 대통령이 검찰총장 시절 그의 '저격수' 역할을 하며 강하게 대립각을 세우기도 했다. 김 검사는 윤석열정부 시절 법무부 검찰과장, 중앙지검 4차장검사 등 요직을 지냈다. 그는 과거 김건희 여사의 '도이치모터스 주가 조작 개입 사건'을 지휘한 인물로, 당시 수사팀의 무혐의 결론을 강하게 반대한 것으로 알려졌다. 법무부 장차관을 보좌해 정책을 총괄하는 법무부 기획조정실장은 최지석(50·31기) 서울고검 감찰부장이 맡게 됐으며, 현재 법무부 검찰국장을 맡고 있는 송강 국장은 광주고검장으로 자리를 옮겼다. 한편 사의를 표명한 이진동 대검 차장검사, 신응석 남부지검장, 양석조 동부지검장, 변필건 법무부 기획조정실장 등은 의원면직됐다. hyun9@newspim.com 2025-07-01 17:47
사진
폭염에 '온열질환자' 속출…환자 425명 [세종=뉴스핌] 신도경 기자 = 지난 30일 서울 전역에 첫 폭염주의보가 시작되면서 올해 온열질환자가 400명을 넘었다. 1일 질병관리청의 온열질환 응급실 감시체계에 따르면 지난 5월 15일부터 6월 29일까지 집계된 온열질환자는 425명으로 사망자는 3명에 달했다. 온열질환은 더운 날씨로 인해 열탈진, 열사병, 열 부종 등이 발생하는 질환이다. 40도 이상의 고열이나 현기증, 두통, 오한 등이 나타난다. [서울=뉴스핌] 김학선 기자 = 서울 전역에 올해 첫 폭염주의보가 발효된 30일 오후 서울 성동구 마장역 인근에서 시민들이 양산을 쓰고 뜨거운 햇볕을 피해 걷고 있다. 2025.06.30 yooksa@newspim.com 기상청은 지난 30일 서울 전역과 경기도 과천, 성남, 구리, 화성에 올해 첫 폭염주의보를 발령했다. 경기도 가평, 광주는 폭염주의보가 폭염경보로 격상됐다. 1일에도 서울의 낮 최고기온은 30도, 강릉 35도, 대전 32도, 광주 35도, 제주 31도로 더운 날씨가 계속될 전망이다.  날씨가 더워지면서 온열질환자 수도 점차 늘고 있다. 지난 5월 15일부터 5월 31일까지 온열환자 수는 62명으로 사망자는 없었다. 이 기간 중 하루 최대로 발생한 온열질환자 수는 21명이다. 반면 지난 28일에는 하루 최대로 발생한 온열질환자 수가 52명으로 늘었다. 지난 1일부터 29일까지 집계된 온열질환자 수는 361명으로 사망자는 3명에 달하며 급증하는 모양새를 보이고 있다.  연령별 현황에 따르면 온열질환자는 대부분 고령층에서 발생했다. 60대가 78명(18.4%)으로 가장 많았고, 50대 70명(16.5%), 30대와 40대는 각각 61명(14.4%)으로 집계됐다. 온열질환자가 속출하는 직업은 미상을 제외하고 단순 노무 종사자로 68명(16%)에 달했다. 농림어업숙련종사자 40명(9.4%), 무직 39명(9.2%) 순으로 나타났다. 열탄진으로 인한 온열질환자는 222명(52.2%)로 대부분을 차지했다. 열사병 85명(20%), 열경련 61명(14.4%), 열실신 53명(12.5%)이다. 하루 중 온열질환이 가장 많이 발생한 시간대는 오후 4∼5시(13.6%)다. 오전 10∼11시(11.8%), 오후 3∼4시(11.5%) 등의 순이었다. 온열질환을 예방하기 위해서는 물을 자주 마시고 시원한 곳에서 지내야 한다. 더운 시간대의 활동을 자제하는 것도 중요하다. 특히 체온 조절이 원활하지 않은 만성질환자, 어린이, 어르신은 더위에 오래 노출되지 않도록 더욱 주의해야 한다. 육현 원주세브란스기독병원 응급의학과 교수는 "온열질환은 충분한 수분을 섭취하고 더운 낮 시간대 활동을 피하는 것만으로 예방이 가능한 질환"이라며 "방치할 때 생명을 위협할 수 있어 각별한 주의가 필요하다"고 했다. 이어 육 교수는 "열사병, 열탈진, 열경련 등 온열질환이 발생할 경우 체열을 신속히 낮추는 것이 가장 중요하다"며 "옷을 느슨하게 풀고, 찬물에 적신 수건을 몸통에 덮거나 겨드랑이와 사타구니 부위에 찬 물병이나 선풍기 바람을 활용해 체온을 낮추는 응급조치가 도움 될 수 있다"고 강조했다. sdk1991@newspim.com 2025-07-01 11:24
안다쇼핑
Top으로 이동