전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능과 GPU

기사입력 : 2019년09월09일 08:00

최종수정 : 2019년09월09일 08:00

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

김정호 교수.

엔비디아 스토리

컴퓨터 구조에서 대표적으로 사용되는 반도체로는 계산 장치인 프로세서(Processor)와 메모리(Memory)가 있다. 그중에서 프로세서로는 개인용 컴퓨터에 많이 사용되는 CPU(Central Processing Unit)가 있고, 스마트폰에는 주로 AP(Application Processor)가 사용되고, 컴퓨터 그래픽 카드에는 GPU(Graphic Process Unit)가 사용된다.

이러한 프로세서 중에서 인공지능 계산을 위한 병렬처리에는 GPU가 가장 많이 사용된다. GPU 내부에는 계산기(Arithmetic Logic Unit, ALU) 코어의 개수가 수천 개 혹은 수만 개에 이른다. 그래서 동시 병렬 계산이 용이하다. 이러한 이유로 인공지능 계산에 GPU가 가장 유용한 프로세서가 된다.

이러한 배경으로 대표적인 GPU 회사인 엔비디아(NVidia)의 성장이 두드러진다. 최근에 GPU는 가상화폐 채굴에 쓰이기도 해서 한때 품절이 나기도 했다. 여기에 그치지 않고 자율주행 자동차의 인공지능 처리에도 GPU가 사용될 전망이다. 그 때문에 지난 10년간 엔비디아의 주가는 꾸준히 상승하고 있다. 이래저래 CPU, AP보다 GPU의 계속된 성장이 기대된다.

2019년 방문한 실리콘밸리의 엔비디아 신사옥 내부. [출처=KAIST]

필자의 연구실에서는 지난 10여년간 GPU와 디램이 3차원적으로 결합한 HBM(High Bandwidth Memory) 모듈을 설계하는 연구를 진행해왔다. 그 과정에서 국내의 삼성전자, SK하이닉스뿐만 아니라 엔비디아와 협력을 지속해 왔다.

HBM에서는 기존의 모듈과는 달리 실리콘 기판을 배선으로 사용해 GPU와 디램 사이의 연결선 개수를 대폭으로 늘린다. 더 빨리 많은 수의 병저렬 계산을 하기 위해서 고안됐다. 이 HBM 모듈은 주로 인공지능 서버에 사용하고 있으며, 그 가격은 1000만원에 가깝다.

이렇게 비용이 많이 드는 것이 단점이지만, 인공지능 시대를 맞아 수요는 계속 증가할 것으로 생각한다. 이러한 이유로 필자의 연구실 졸업생이 엔비디아에 여러 명 진출했다. 대학원 학생들이 인턴으로도 엔비니아에 파견 나가기도 한다.

2019년 방문한 엔비디아에서의 기술 교류 미팅. [출처=KAIST]

인공지능의 기본은 행렬 수학

인공지능에서 지능신경망인 DNN(Deep Neural Network)의 입력은 디지털 데이터이다. 그리고 데이터 입력은 일정 수의 데이터 묶음 형태로 표현된다. 이러한 디지털 데이터의 묶음을 수학 용어로 벡터(Vector)라고 한다.

예를 들어 카메라 이미지 화소점인 픽셀(Pixel) 하나에는 RGB(Red, Green, Blue) 세 가지 색깔의 배합과 밝기가 표현된다. 그러면 이미 4가지 요소를 갖는 벡터가 된다. 거기에 더해 화면 속의 위치 정보가 x, y로 들어가면 6열 벡터가 된다. 언어를 입력 벡터로 쓴다면 그 벡터 크기가 수백만개도 된다. 단어의 개수가 그만큼 많다.

이러한 입력 벡터를 다른 형태로 변환할 필요가 생긴다. 이때 벡터와 행렬(Matrix) 곱셈이 필요하다. 예를 들어 그래픽 처리에서 위치 정보가 포함된 벡터의 좌표를 변환하려고 한다면, 이 벡터에 행렬을 곱하면 된다.

보는 관찰자의 위치를 3차원으로 바꾼다면 새로운 좌표에서 다시 위치를 잡기 위해서 데이터 벡터에 좌표 변환을 하게 되는데, 이때 벡터에 좌표 변환 3x3 행렬을 곱하게 된다.

마찬가지로 인공지능 판단이나 예측에도 벡터와 행렬 계산이 사용된다. DNN에서는 입력이 데이터 벡터가 되고, 그 벡터 신호에 입력층(Input layer), 은닉층(Hidden layer), 출력층(Output layer)으로 지나가면서 계속 행렬 곱셈이 일어난다. 이러한 과정을 전전파 학습(Forward Propagation Training)이라고 한다.

거꾸로 최종 정답과의 차이를 확인하고 반대 방향으로 행렬을 곱해가면서 네트워크를 교정해 가는 과정을 역전파 학습(Backward Propagation Training)이라고 한다.

이처럼 학습과정에서 행렬계산이 수없이 일어난다. 그래서 인공지능 계산에서 가장 빈번히 일어나는 컴퓨터 계산이 행렬 곱셈과 덧셈이다. 그리고 이러한 병렬 계산에 GPU가 가장 적합한 프로세서 구조이다.

인공지능 학습과 판단에 필요한 행렬 계산식들. [출처=KAIST]

인공지능을 위한 GPU 구조

이와 같은 행렬 계산은 하나하나 순차적으로 일어나지 않고 동시에 병렬로 한다. 이렇게 동시에 병렬로 계산하는 방법으로는 컴퓨터를 병렬로 연결해서 수행하는 방법이 있다. 초기 구글 알파고에서 쓰인 방법이다.

그러나 이러한 병렬 계산을 위해서는 컴퓨터끼리 데이터를 주고받아야 한다. 컴퓨터끼리 케이블로 연결돼야 한다. 이러면 데이터를 컴퓨터 간에 이동하는 데 시간이 걸린다. GPU는 반도체 프로세서 내부에서 병렬 계산을 하므로 빠르고 효율적이다.

엔비디아 GPU의 경우, 내부에서 80여개의 SM(Streaming Multiprocessor)이 병렬 계산을 나누어서 한다. 그 SM 속에는 32개의 중간 크기의 계산블록(Warp)이 있고, 각 Warp에는 64개의 계산 코어(Thread)가 있다.

그래서 GPU 내에는 전체적으로 80x64x32=16만3840개의 병렬 계산 코어가 있다. 이들이 동시에 병렬 계산을 한다. 앞으로는 계산 코어의 개수가 100배 이상 증가할 것으로 예상한다. 모두 행렬 계산을 빠르고 효율적으로 하기 위함이다.

GPU에도 단점은 있다. 코어가 많기 때문에 코어 주변에 계산 결과를 임시로 저장하는 캐쉬(Cash) 메모리가 한정돼 있다. 그래서 매번 계산 결과를 낼 때마다 외부의 디램에 저장하고 다시 읽어 와야 하는 번거로움이 있다. GPU 외부 메모리인 디램의 성능이 지원해줘야 한다. GPU의 성능을 위해서는 디램의 성능도 같이 좋아져야 한다.

마지막으로 GPU의 어려운 점은 계산량이 너무 많아서 프로세서에서 열이 많이 발생하고, 그 결과 반도체 온도가 올라간다는 점이다. 그러면 프로세서의 계산 능력이 급속히 감소한다. 그래서 반도체 냉각 기술이 중요해지고 있다.

이처럼 GPU는 더욱 병렬화되고, 메모리와도 병렬화되며, 냉각 기술을 위한 혁신이 계속될 전망이다. 4차 산업혁명이 진행되면서 GPU의 수요와 기술 발전은 더욱 심화할 전망이다.

최신 엔비디아 GPU의 내부 구조도. [출처=KAIST]

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
트럼프, 韓 4대 그룹 총수들과 골프 [서울=뉴스핌] 송은정 기자 = 도널드 트럼프 미국 대통령이 한국을 비롯한 아시아 주요 기업 총수들과 함께 한나절 동안 '골프 회동'을 진행했다. 글로벌 통상 현안이 산적한 가운데 열린 자리여서 관세와 대미 투자 관련 의견 교환 여부에 관심이 쏠린다. (왼쪽부터)이재용 삼성전자 회장, 최태원 SK 회장, 정의선 현대차 회장, 구광모 LG 회장 [사진=뉴스핌DB] 19일 외신에 따르면 18일(현지시각) 트럼프 대통령은 오전 9시쯤 플로리다주 팜비치의 마러라고 별장을 나와 인근 '트럼프 인터내셔널 골프클럽'으로 이동해 오후 5시쯤까지 라운딩을 즐겼다. 백악관 풀기자단은 "트럼프 대통령이 오전 9시15분 골프장에 도착했다"고 전했다. 이날 행사에는 이재용 삼성전자 회장, 최태원 SK그룹 회장, 정의선 현대차그룹 회장, 구광모 LG그룹 회장, 김동관 한화그룹 부회장 등 한국 주요 대기업 총수들이 참석한 것으로 알려졌다. 일본 소프트뱅크 손정의 회장이 이들을 초청했으며, 일본과 대만 주요 기업인들도 함께 자리했다. 한국의 주요 재벌기업 총수들이 집단적으로 미국의 대통령 및 정·관계 주요 인사들과 함께 골프를 즐긴 것은 사상 유례가 없는 일이다. 통상 4인 1조로 진행되는 아마추어 골프 경기에서 트럼프 대통령이 누구와 한 조를 이뤘는지는 알려지지 않았다. 백악관은 풀기자단의 확인 요청도 거부했다. 골프장 입구는 경호원들에 의해 외부인의 접근이 차단됐다. 골프장 주변도 높은 나무로 빽빽이 둘러싸여 내부 확인은 어려웠던 것으로 알려졌다. 트럼프 대통령이 한국 기업인들과 동반 라운딩을 하지 않았더라도 경기 전후 또는 점심시간이나 휴식시간 등을 활용해 대화를 나눴을 가능성이 있다. 이 자리에서 반도체·자동차·배터리·조선 등 분야에서 이들 기업의 대미 투자 및 관세에 대한 의견이 오갔을지에 대해 관심이 쏠리고 있다. 한편 마러라고 별장 일대에서는 경찰이 기자와 시민의 접근을 통제하며 "VIP들이 있다"며 경계태세를 유지한 것으로 전해졌다. yuniya@newspim.com 2025-10-19 10:00
사진
김세영, 고향 땅에서 '5년만의 통산 13승' [서울=뉴스핌] 박상욱 기자 = '빨간 바지의 마법사'가 화려한 금의환향 퍼포먼스를 보여줬다. 고향 팬들과 가족의 열렬한 응원을 받은 김세영(31·메디힐)이 고향 땅에서 와이어 투 와이어로 천금 같은 우승 트로피를 들어올렸다. 2020년 11월 펠리컨 챔피언십 이후 5년이라는 긴 침묵을 깨고 LPGA 통산 13승을 기록했다. 한국은 올 시즌 6승과 함께 7명째 LPGA 우승자를 배출했다. 김세영은 19일 전남 해남군 파인비치 골프링크스(파72·6785야드)에서 열린 미국여자프로골프(LPGA) 투어 BMW 레이디스 챔피언십 최종일 4라운드에서 5언더파 67타를 적어내 최종 합계 24언더파 264를 기록, 단독 2위 하타오가 나사(일본)를 4타 차로 따돌리고 정상에 올랐다. 24언더파는 대회 72홀 최저타 신기록이다. 우승 상금 34만 5000달러(약 4억9000만원)를 보태 통산 1518만 달러의 상금을 쌓아 로레나 오초아(멕시코)를 제치고 역대 상금 10위에 올랐다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 우승 트로피를 들고 포즈를 취하고 있다. [사진=LPGA] 이날 4타 차 선두로 출발한 김세영은 초반 불안한 출발을 보였다. 3번 홀에서 짧은 파 퍼트를 놓치며 1번 홀에서 버디를 잡은 노예림에게 2타 차까지 쫓겼다. 그러나 5~7번 홀에서 3연속 버디를 잡아 추격자들의 의지를 꺾었다. 이어 9번 홀(파4)에서 버디를 추가하며 2위와 4타 차로 벌려 우승 가능성을 높였다. 후반에는 추격자들이 타수를 줄이지 못하au 단독 2위 경쟁을 하는 사이 김세영은 편안하게 타수를 지켜가며 우승을 굳히는 상황으로 진행됐다. 후반 첫 4개 홀을 파로 지나간 김세영은 14, 15번 홀에서 버디를 보태 2위로 치고 올라온 셀린 부티에(프랑스)와 6타 차까지 벌려 사실상 우승을 확정했다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 챔피언 퍼트를 넣은 뒤 기뻐하고 있다. [사진=LPGA SNS동영상 캡처] 해남 옆동네인 전남 영암군에서 태어난 김세영은 한국 국적 선수로는 2021년 고진영 이후 4년 만에 이 대회 챔피언에 올랐다. 2019년에 시작한 BMW 레이디스 챔피언십은 2023년까지 한국 선수 혹은 한국계 선수들이 우승컵을 가져갔다. 2019년 장하나, 2021년 고진영, 2022년 리디아 고(뉴질랜드), 2023년 이민지(호주)가 우승했고 지난해엔 호주의 해나 그린이 이 대회 최초로 한국 또는 한국계 선수가 아닌 우승자로 이름을 남겼다. 2025 BMW 레이디스 챔피언십 우승자 안세영. [사진=LPGA] 김세영은 2015년 LPGA 투어에 데뷔해 3승을 거두며 신인상을 수상했다. 이후 2020년까지 매년 우승 트로피를 들어 올렸다. 2019년에는 3승을 쓸어 담았고 2020년에는 메이저 대회인 KPMG 위민스 PGA 챔피언십 우승을 포함해 2승을 달성하며 올해의 선수상까지 거머쥐었다. 특히 김세영은 2018년 7월 손베리 크리크 클래식에서 31언더파(63-65-64-65, 257타)로 우승하며 남녀 통틀어 72홀 역대 최저타 및 최다 언더파 신기록을 세웠다. 이전 기록은 LPGA 애니카 소렌스탐의 27언더파, PGA 어니 엘스의 30언더파였다. 한국 선수들은 이날 대약진했다. 김아림이 이날 6타를 줄이며 공동 3위에 올랐고 안나린과 최혜진은 무려 9타씩 줄여 나란히 공동 7위에 랭크됐다. 김효주와 이소미가 공동 10위에 자리해 한국 선수 6명이 톱10에 진입했다. 고진영도 8타를 줄여 고교생 아마추어 오수민과 함께 공동 19위로 순위를 크게 끌어 올렸다. LPGA 투어 BMW 레이디스 챔피언십 대회 중 은퇴 기념 케이크를 선물 받은 지은희(가운데). [사진=LPGA] 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 캐디로 나선 최나연. [사진=LPGA] 19년 LPGA 투어 생활을 마감하는 은퇴 무대로 이번 대회에 공동 24위로 마친 지은희는 9번 홀에서 현역 마지막 퍼트를 버디로 장식하며 갤러리들의 뜨거운 박수 갈채를 받았다. 루키 윤이나는 3타를 줄이는 데 그쳐 공동 24위로 톱10 진입에 실패했다. 2023년 은퇴한 최나연은 이번 대회에서 이정은5의 캐디로 나서 눈길을 끌었다. psoq1337@newspim.com 2025-10-19 16:10
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동