전체기사 최신뉴스 GAM
KYD 디데이
마켓

속보

더보기

[김정호의 4차혁명 오딧세이] 영화보며 눈물 흘리는 인공지능(AI) 멀지 않았다

기사입력 : 2018년01월22일 10:00

최종수정 : 2018년01월22일 10:00

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

인공지능(AI)도 신경세포 겹겹이 쌓이면 쌍둥이도 구별 가능
음성 인식, 스토리 인식 기능이 더해지면 영화 감상 가능해져

'파블로프의 개' 실험, 그리고 딥러닝

인공지능 시대의 도래를 가능케 만든 알고리즘이 딥러닝(Deep Learning)이다. 딥러닝 알고리즘은 신경세포의 동작과 신호 전달 과정을 소프트웨어로 구현하는 방법이다. 우리 뇌는 신경세포(뉴런)들과 그것들을 연결하는 시냅스(연접체)들로 구성돼 있다. 

딥러닝 알고리즘에선 신경 세포를 연결하는 시냅스를 통해 신호가 전달될 때 신호 전달 가중치를 둔다. 그리고 이 여러 개의 신호가 한 개의 신경세포에서 만나서 더해지는데, 이때 더한 값이 어느 임계함수 값을 넘으면 다음 신경세포로 그 신호가 전달된다.

이처럼 딥러닝 알고리즘에선 수 많은 가중치와 임계함수가 학습을 통해 정해진다. 바로 이 가중치와 임계함수 값의 결정을 한 학습에는 데이터가 필요한데, 기존에 데이터 센터에 저장된 빅데이터를 이용하는 방법이 있고, 인공지능 스스로 데이터를 만들어 컴퓨터 스스로 자가 학습하는 '강화 학습 방법'이 있다. 그런데 바로 이 자가 학습은 인간의 도움이 필요 없기 때문에 더 무섭기도 하다.

딥러닝 알고리즘을 쉽게 개념적으로 설명하는 방법으로 러시아 생리학자 이반 페트로비치 파블로프가 실시한 '파블로프의 개' 실험을 예로 들기도 한다. '바블로프의 개' 실험은 반사 신경 작동에 대해서 연구한 내용으로 교과서에도 나올 정도로 유명하다. 이 실험에서는 음식을 직접 눈 앞에 보여 주거나 종소리를 들려 주면서 학습을 하게 된다. 눈으로 보는 음식, 귀로 들리는 종소리가 학습용 데이터가 된다.

눈으로도 보고 또는 종도 치면 그 합이 어느 임계함수 값을 넘으면 바로 개가 침을 흘리게 된다는 것인데 이것을 알고리즘으로 표현한 것이 딥 러닝이다. 그런데 이 가중치 값과 임계함수 값은 수많은 파블로프의 개 실험을 통해 학습으로 얻은 데이터로 정해진다.

'파블로프의 개' 실험을 이용한 딥러닝 프로세스. 출처 : KAIST.

딥러닝은 깊은 추상화 과정

이처럼 딥러닝 알고리즘을 '파블로프의 개' 실험으로 설명하면 아주 단순하고 명료한 이해에 도움을 준다.

그런데 딥러닝 알고리즘에는 신경세포 층(Layer)으로 표현되는 추상화 단계가 있다. 이렇게 신경세포 층으로 표현되는 층수가 늘어날수록 판단의 정확도가 높아진다. 그 층 수가 200개를 넘기도 한다. 그래서 딥(Deep) 러닝이라고 한다. 층수가 늘어가면서 추상화의 깊이가 늘어난다. 입력이 영상 이미지라고 하면, 추상화를 진행하면서 처음에는 얼굴을 윤곽을 인식하게 되고, 그 다음에 코, 눈, 귀를 파악해 가고, 그 다음에 남녀를 파악하고, 나이도 파악하고, 궁극적으로 얼굴의 주인을 파악해 간다.

그러면 고양이와 호랑이도 구분할 수 있게 된다. 더 나아가 쌍둥이도 구별하고, 같은 사람이라도 젊었을 때의 모습, 나이든 모습도 구별하고 동일 인물임을 파악할 수 있다. 마지막에 100만 명 중의 또는 10억 중의 한 사람을 구분하게 된다. 여기에 음성 인식과 스토리 인식 기능, 감정 기능이 합쳐지면 영화도 보고 눈물을 흘릴 날이 멀지 않았다. 모두 딥러닝 알고리즘과 학습을 통해서 구현 가능하다.

딥 러닝을 이용한 영상 이미지 추상화 과정, 출처: KAIST.

딥러닝, 인간의 '인지 기능의 비밀' 열어 젖힐 것

기존의 뇌 과학은 뇌 현상의 이해를 수학이나 논리 작업으로 파악하려고 했다. 그에 기반하여 알고리즘을 세우고 소프트웨어로 구현해서 인간지능을 재현하려 했다. 하지만 어느 이상 발전하는데 한계를 만났다.

그런데 딥러닝의 내부 동작은 블랙박스다. 여기서는 뇌 내부의 동작 원리를 알려고 하지 않는다. 아무리 빅데이터로 학습해서 가중치와 임계함수를 정해가더라도 그것들은 단순히 숫자의 나열일 뿐이지 논리도 없고 의미도 없다. 알려고도 하려고도 않는다. 빅데이터를 기반으로 학습해서 변수와 함수 값을 채워나갈 뿐이다. 그 이후 충분한 학습 후에 딥러닝 알고리즘이 제공하는 판단과 예측 결과만 믿을뿐이다.

이렇게 모든 것을 기존의 연구 방법론을 포기하고, 비우고, 새 출발하기 때문에 인공지능이 이제 신의 영역에 도달할 수 있는 새로운 기회를 잡았는지도 모른다. 과학의 한계를 인정하고, 빅데이터를 기반한 학습을 믿고, 컴퓨터의 능력을 믿기 때문이다. 완전히 새로운 출발이다.

블랙박스의 개념도. 출처 : 구글.

 

[김정호 카이스트 전기 및 전자공학과 교수]

김정호 교수

 

[뉴스핌 베스트 기사]

사진
[변상문의 화랑담배] 제2회 광복군 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다.  1940년 9월 17일 중국 중경 가릉호텔에서 성대한 행사가 열렸다. 대한민국 임시정부 광복군 창설식이었다. 미국 한인 동포들이 보내온 돈 4만원으로 조직한 군대였다. 지금 돈으로 환산하면 20억 원 정도 된다. 총사령관 이청천 장군, 참모장 이범석 장군, 제1지대장 이준식, 제2지대장 고운기, 제3지대장 김학규, 제5지대장에 나월환을 임명했다. 지대장은 지금의 사단장에 해당한다. 모두 봉오동 전투, 청산리 전투를 비롯하여 남북 만주에서 전개된 항일무장투쟁에 직접 참여하여 활동한 독립군 출신이었다. 한국광복군 훈련반 제1기 졸업사진. [사진= 독립기념관] 임시정부 주석 김구는 포고문을 통해 "국내외 동포들에게 알립니다. 1940년 9월 17일부로 대한민국 광복군을 창설하였습니다. 광복군은 1907년 8월 1일 일제가 대한제국 군대를 해산한 날이 바로 광복군 창설일임을 선언합니다. 광복군은 구 한국군의 후신으로 33년간에 걸친 의병과 독립군의 항일무장투쟁을 계승한 전통 무장 조직입니다"라고 했다. 대한제국 국군-의병-독립군의 군맥(軍脈)과 군혼(軍魂)을 분명하게 잇고 있음을 천명한 것이다. 부대 편성은 소대, 중대, 대대, 연대, 여단, 사단 6단으로 편성하였다. 총 3개 사단을 조직할 계획이었다. 그러나 인원이 적은 상황에서 우선 지대를 만들고, 각 지대를 구대와 분대로 연계한 전투부대를 구성했다. 임시정부에서 1940년 9월 19일 중국 국민당 정부에 통보한 '한국광복군 총사령부 직원 명단'에 의하면, 부대 규모가 총사령부와 4개 단위부대, 여기에다 조선혁명군 부대까지 포함하여 5000여 명이었다. 임시정부에서는 1941년 12월 연합국의 일원으로 일본에 선전포고했다. 1942년에는 미국 측에 "미국이 제주도를 해방 시켜 주면, 중경에 있는 임시정부를 제주도로 옮긴 후, 광복군이 미군과 함께 한반도 상륙작전을 전개하겠다."라고 제안하였다. 이 제안은 실제로 미국 OSS 부대(지금의 CIA)와 1945년 4월부터 8월까지 강도 높은 국내 진공 작전을 준비했다. 주요 훈련은 3개월 기간에 고공낙하, 암살법(권총에 특수장치를 하여 소리 없이 암살하는 방법), 통신(암호의 작성 및 해독법, 무전기 조작 및 수리), 교란 행동, 정보수집, 폭파 등 이었다. 일과는 07:00∼12:00 오전 훈련, 13:00∼18:00 오후 훈련, 19:00∼22:00 야간 훈련이었다. 주요 임무는 대한민국으로 낙하산과 잠수함으로 침투하여 미 공군 공습에 필요한 지형 등의 정보를 제공하고 일본군 군사시설 탐지 및 파괴 지하 유격대를 조직하여 연합군 상륙작전 시 제2선에서 연결하는 작전이었다. 마침내 1945년 8월 7일 모든 훈련을 마치고 국내진공작전 출정식을 개최했다. 개시일은 8월 10일이었다. 출정식 때 장준하 경기도 공작 반장은 "나는 조국광복을 위해 죽음을 선택했습니다. 내가 나의 죽음을 지불하면, 내 능력껏 그 대가가 조국을 위해서 결제될 것입니다. 나의 각오는 한 장의 정수표입니다. 발생인은 장준하, 결제인은 조국입니다"라는 유서까지 작성했다. / 변상문 국방국악문화진흥회 이사장 2025-09-08 08:00
사진
'포스트 이시바' 누구?...고이즈미·다카이치 선두 [서울=뉴스핌] 오영상 기자 = 이시바 시게루 일본 총리가 자민당 총재직 사임을 공식화하면서, 일본 정국의 관심은 차기 자민당 총재 선거로 쏠리고 있다. 집권당 총재가 곧 총리직을 맡는 일본 정치 구조상 이번 총재 선거는 사실상 다음 총리를 뽑는 절차다. 자민당은 조만간 새로운 총재 선거 일정을 확정할 예정이다. 이번 선거에서는 지난 2024년 9월 총재 선거에서 이시바 총리와 경합했던 주요 인사들이 다시 출마할 가능성이 높다. 고이즈미 신지로 농림수산상, 다카이치 사나에 전 경제안보담당상, 하야시 요시마사 관방장관, 모테기 도시미쓰 전 간사장, 고바야시 다카유키 전 경제안보담당상 등이 후보군으로 거론된다. 정국 운영이 소수 여당이라는 제약 속에서 이루어지는 만큼, 차기 총재가 야당과 어떻게 연대할지, 어떤 연립 구도를 짤지가 최대 쟁점으로 꼽힌다. '포스트 이시바' 후보로 꼽히고 있는 고이즈미 신지로 일본 농림수산상 [사진=로이터 뉴스핌] ◆ 고이즈미·다카이치 선두권 현재 여론조사에서는 고이즈미 농림수산상과 다카이치 전 경제안보상이 선두권을 형성하고 있다. 니혼게이자이신문 지난달 29~31일 실시한 여론조사에 따르면 차기 총리에 적합한 인물로 다카이치가 23%, 고이즈미가 22%를 기록했다. 나란히 1, 2위다. 자민당 지지층으로 한정하면 고이즈미가 32%로, 다카이치(17%)를 크게 앞서는 것으로 나타났다. 다카이치는 2024년 총재 선거에서 1차 투표에서 1위를 차지했으나 결선에서 이시바에게 역전패했다. 고이즈미 역시 의원 표에서 선두에 올랐지만 당원 표에서 밀리며 결선에 오르지 못했다. 두 사람 모두 당내 기반과 대중적 인지도를 겸비해 차기 선거에서도 가장 주목받는 주자들이다. 고이즈미 농림수산상은 1981년생(44세)으로 고이즈미 준이치로 전 총리의 차남이다. 2009년 중의원 첫 당선 이후 줄곧 '포스트 아베', '차세대 리더'로 주목받았다. 환경상, 농림수산상을 거쳤으며 개혁 성향과 젊은 이미지로 지지층을 넓혔다. 2024년 총선에서 당 선거대책위원장을 맡았으나 참패 책임을 지고 물러났다. 이후 농림수산상으로 복귀해 쌀 유통 개혁 등 농정 개혁에 매진했다. 대중적 인지도와 '고이즈미 브랜드'라는 정치 자산이 최대 강점으로 꼽힌다. 다카이치 전 경제안보상은 1961년생(64세)으로 보수 강경파로 분류되는 여성 정치인이다. 2021년 총재 선거에 첫 도전해 아베 신조 전 총리의 전폭적 지원을 받으며 3위를 기록했다. 2024년 총재 선거 1차 투표에서 최다 득표(의원 72표, 당원 109표)를 얻었으나 결선에서 이시바 총리에게 역전 당했다. 유일한 여성 후보로서 '보수의 아이콘' 이미지를 갖고 있으며, 아베 전 총리와 가까웠던 의원 그룹이 주된 지지 기반이다. 이시바 정권에서 당직 제안을 거절하며 독자 노선을 유지해 왔다. '포스트 이시바' 후보로 꼽히는 다카이치 사나에 전 일본 경제안보담당상 [사진=로이터 뉴스핌] ◆ 하야시·모테기 등 잠룡도 주목 고이즈미와 다카이치 두 선두 주자 외에 잠룡들의 행보도 주목된다. 하야시 요시마사 관방장관은 옛 기시다파 일부의 지지를 받고 있으며, 이시바 정권의 2인자로서 존재감을 키워왔다. 모테기 도시미쓰 전 간사장은 당내 경험과 풍부한 인맥을 강점으로 삼고, 아소 다로 전 부총리와 교류를 통해 지지 기반을 다지고 있다. 고바야시 다카유키 전 경제안보담당상은 5선 의원으로, 동기 의원들과 옛 니카이파의 지원을 받으며 출마 가능성을 열어두고 있다. ◆ 총재 선거 이후에도 정국 '안갯속' 자민당 총재 선거는 국회의원 표와 당원·당우 표를 합산하는 방식이 원칙이지만, 긴급 시에는 국회의원과 지방 지부 대표만 투표하는 '양원 의원 총회' 방식으로 대체될 수 있다. 이 경우 의원 표의 비중이 커져 파벌 역학이 중요해진다. 차기 총재가 선출되더라도 곧바로 정권 안정으로 이어진다는 보장은 없다. 일본 헌법상 총리는 국회에서 지명되는데, 자민·공명 양당은 현재 중의원과 참의원 모두에서 과반을 잃은 상태다. 따라서 야당이 단일 후보를 세워 결집할 경우, 자민당 총재가 총리로 지명되지 못할 가능성도 배제할 수 없다. 자민당 총재가 총리에 오르더라도, 예산안·세제 개혁 법안 등 국정 운영은 야당 협조 없이는 불가능하다. 이런 이유로 차기 총재는 곧바로 '연립 확대'나 '정책 연대'를 추진할 수밖에 없고, 총재 선거 과정에서도 어떤 야당과 손을 잡을지가 핵심 화두가 된다. 결국 이번 자민당 총재 선거는 단순히 차기 지도자를 뽑는 절차를 넘어, 일본 정치가 다당제 속에서 어떤 연립 구도를 구축할지 시험대가 되는 분기점으로 평가된다. goldendog@newspim.com 2025-09-08 09:26
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동