전체기사 최신뉴스 GAM 라씨로
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능을 위한 인공데이터 생산

기사입력 : 2019년12월16일 08:00

최종수정 : 2020년03월10일 16:44

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습해, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하며 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력센터장 등을 겸하고 있다.

데이터가 필요한 인공지능 학습

인공지능 중에서 데이터로 학습하는 방식을 기계학습(Machine Learning)이라고 하고, 그 기계학습 중에서 데이터에 이름(Label)을 붙여서 학습하는 방식을 지도학습(Supervised Learning)이라고 한다.

김정호 교수

데이터에 이름을 붙여야 하는 인공지능 학습 방식이다. 대표적으로 이미지를 인식하는 CNN(Convolutional Neural Network) 알고리즘이 이 방식의 인공지능이 된다. 이미지와 이름을 보고 학습해서 물체를 판단해 낸다.

그런데 이러한 지도학습 방법은 많은 비용과 노동력이 필요해서 결국 시간과 자본이 들어간다. CNN 학습을 위해서는 수백만 장, 수천만 장의 사진을 모으고, 그 사진에 이름을 붙여야 한다. 이러한 작업에 개인이 자발적으로 이름을 붙일 수 있으나 그 한계가 있다.

구글과 페이스북은 인터넷과 SNS로부터 수많은 데이터인 사진 이미지를 모은다. 여기에 모두 직접 사람이 이름을 붙이기는 불가능에 가깝다. 그래서 구글과 페이스북은 사진 상황을 보거나, 해시태그를 이용해서 자동으로 그림에 이름을 붙이는 인공지능 알고리즘 연구를 하기도 한다. 이것이 모두 데이터에 이름을 붙이는 데 필요한 노력이다. 인공지능이 학습하는 데 필요한 비용이다. 데이터와 이름은 무료가 아니다.

사람 중에 똑똑한 사람을 '하나를 알려주면 열을 안다'라고 표현하기도 한다. 학생을 지도하다 보면 그런 학생을 종종 만난다. 나중에는 그 학생이 오히려 나에게 스승이 된다. 그런 학생들을 통해서 거꾸로 배운다. 이럴 때 학교에 있는 교수로 최고의 기쁨을 느낀다. 이런 학생은 스스로 학습하고 연구하는 독자적인 학습과 연구 수행능력을 갖추게 된다.

인공지능을 지도할 때도 마찬가지이다. 학습을 줄이고 최대한 인공지능의 지능을 높이고자 연구한다. 그러면 데이터 모집과 이름 붙이기 수고가 줄어들 수 있다. 그럼 척척 알아서 학습하게 된다.

CNN을 이용한 이미지 분류 및 탐지 방법. [출처=KAIST]

최소한의 데이터로 인공지능 학습

이러한 연구 중, 최근에는 인공지능 연구로 전이학습(Transfer Learning)이라고 불리는 학습 방법이 있다. 한번 배운 학습 결과를 다른 곳에 다시 쓴다는 의미이다. 다시 말하면, 여러 번 배울 필요가 없다는 의미이다. 수학에서 기초 원리를 잘 파악하면 다양한 응용문제를 푸는 원리와 같다.

이처럼 한번 학습한 결과를 다른 응용에 적용하려는 시도를 전이학습(Transfer Learning)이라고 부른다. 학습과정에서 얻는 인공지능망의 구성과 변수도 다른 용도의 인공지능망으로 전이될 수 있다. 그럼 이를 전수한 새로운 인공지능 신경망은 학습량이 줄어든다. 아예 이러한 전체 과정을 스스로 할 수도 있다. 이 방법을 자체학습(Self-learning)이라고 부른다.

최근 연구하는 인공지능 학습 방법이다. 모두 학습 부담을 줄이고 데이터 필요 분량을 줄이려는 시도이다.

아예 한번 교육으로 모든 교육이 끝나는 단수학습(One short Learning) 방법에 대한 연구도 시작됐다. 수학에서 문제 하나만 풀어보면, 유사한 모든 문제를 푸는 능력이라 보면 된다. 천재를 키우는 인공지능 학습 방법으로 보면 된다.

예를 들면 어린이를 학습할 때, 공룡 사진 하나만 보여주면, 그 이름을 영원히 기억한다. 지금의 인공지능 학습은 많은 수의 사진을 보여주면서 학습하고 그 결과로 인공지능망이 정해진다. 단 한 번의 이미지 학습으로 인공지능망을 정하려는 시도인 셈이다.

매우 도전적이지만, 언제인가 인공지능이 이 단계에 도달할 것으로 본다. 이 학습 방법은 '하나를 가르쳐 주면 모든 것을 안다'라는 설명으로도 가능하다. 천재 학생 지도 방법이다. 이 방법 역시 데이터를 최소화하면서 인공지능을 학습하는 방법이라고 본다.

인공 데이터(Artificial Data)의 생성

인공지능에는 학습을 위한 데이터가 필요하다. 일반적으로 데이터가 많을수록 지능이 높아진다. 그래서 빅데이터를 모으려고 한다. 그래서 데이터도 인공적으로 만들려고 한다. 이를 필자는 인공 데이터(Artificial Data)라고 부른다. 인공지능(Artificial Intelligence)처럼 인공 데이터(Artificial Data)도 대세가 된다. 아예 사람의 도움을 받지 않고 인공지능 스스로가 인공지능 학습용 데이터를 만들 수 있는 세상이 된다.

데이터를 인공적으로 만드는 방법은 제일 먼저 원본 이미지를 변형하는 방법이다. 글자를 인식하는 CNN을 위한 손글씨 데이터를 만든다고 하면, 기본 데이터 글씨(MNIST)를 기초로 컴퓨터가 그 글씨체를 변형할 수 있다.

아래위로 길게 늘이거나, 글씨체 자체를 기울이게 할 수 있다. 또는 흐리게 만들거나, 가늘게 만들 수 있다. 이미지에 잡음을 넣을 수 있다. 바탕도 바꿀 수 있다. 또는 색깔을 다르게 입힐 수 있다. 또는 글자 크기를 키울 수도 있다. 컴퓨터와 알고리즘을 결합하면 한 장의 기본 글씨 이미지로 수백 장, 수천 장의 파생 데이터를 컴퓨터로 만들 수 있다.

이렇게 기본 데이터를 변형해 빅데이터를 만들 수 있다. 이 빅데이터는 다시 인공지능 학습에 쓰인다. 인공(Artificial)이 돌고 돈다.

처음부터 아예 컴퓨터가 스스로 데이터를 만들 수 있다. 그 데이터로 인공지능이 학습한다. 예를 들어 자율주행자동차를 위한 학습용 사고 장면 영상을 만든다고 가정하자. 자율주행자동차 학습을 위해 영상을 직접 만드는 것은 매우 위험하고 비싸다. 따라서 사고 영상을 컴퓨터로 인공적으로 만들어 이를 이용해서 인공지능이 학습하는 것이 효율적이다.

제목과 주제를 주면 컴퓨터가 3차원 영상과 이미지를 만들어 내는 연구가 진행 중이다. 그렇게 되면 인공지능이 경험하는 세계도 인공적으로 컴퓨터로 만들어진다. 데이터를 만드는 시간과 비용, 수량의 한계를 인공 데이터 생성을 통해서 해결하려고 한다. 이런 방식을 필자는 데이터 증강(Data Augmentation)이라고 부르기도 한다.

그뿐만 아니라 강화학습(Reinforcement Learning)에서도 인공적으로 계산해서 학습한다. 강화학습에서는 게임을 하듯이 학습한다. 알파고가 이세돌 9단과 바둑을 둘 때 사용한 인공지능 학습 방법이다.

이제는 컴퓨터끼리 게임을 하면서 바둑 기보 데이터를 생산한다. 그러니 이 상황에서도 인공지능 학습을 위한 환경을 컴퓨터가 가상으로 만든다.

강화학습을 이용해서 공학 문제의 최적화 설계도 자동화하려는 시도가 시작되었다. 여기서도 컴퓨터 시뮬레이션으로 데이터가 만들어지고 이를 통해서 학습한다. 이렇게 되면 컴퓨터가 다 알아서 한다. 이제 학습에도 인간의 도움이 점점 덜 필요하게 된다. 학습도 컴퓨터가 담당한다.

CNN에서 손글씨 학습을 위해 사용되는 MINST(Modified national Institute of Standards and Technology) 데이터베이스 이미지. [출처=MINIST]

가상 데이터(Virtual Data)인 세상

인공지능 학습을 위한 데이터를 모으는데 개인의 정보보호와 특허 문제가 발생한다. 학습을 위해 모은 데이터의 주인은 누구이고, 그 개인의 정보는 어디까지 보호해야 할 것인가가 사회적, 법률적, 정치적 쟁점이 될 전망이다. 그래서 빅데이터를 모으기가 점점 더 어렵게 되었다.

그래서 인공지능을 위한 빅데이터를 컴퓨터로 인공으로 만드는 방법이 중요해진다. 앞으로 점점 더 그렇게 될 것으로 예측한다.

이렇게 만들어진 인공 데이터로 다시 인공지능망이 학습한다. 그 학습 결과는 다른 응용 분야로 전이된다. 그 인공지능으로 인공지능 데이터를 만든다. 이제 인간이 파고들 틈이 없다. 인공지능이 인공 데이터도 만들고, 학습도 스스로 한다. 미래 인공지능의 모습이다. 모두 컴퓨터의 성능과 메모리 반도체의 성능이 높아져 가능하다. 인공 세상(Artificial World)이다. 데이터도 가상화(Virtualization)된다. 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr

CES 2025 참관단 모집

[뉴스핌 베스트 기사]

사진
'왕좌의 게임' 재현...넷마블 '지스타' 첫선 [서울=뉴스핌] 양태훈 기자 = 넷마블이 HBO의 메가 IP '왕좌의 게임'을 활용한 '왕좌의 게임: 킹스로드'와 국내 모바일 게임의 대중화를 이끈 '몬스터 길들이기'의 정통 후속작 '몬길: STAR DIVE'를 선보이며 글로벌 게임 시장 공략에 나선다. 8일 넷마블은 서울 구로구 지타워에서 '지스타 2024 출품작 미디어 시연회'를 열고 국제 게임 전시회 '지스타 2024'에서 선보일 신작 '왕좌의 게임: 킹스로드'와 '몬길: STAR DIVE'를 최초로 공개했다. '왕좌의 게임: 킹스로드'는 전 세계적으로 흥행한 HBO 드라마 IP를 활용한 오픈 월드 액션 RPG다. 8일 넷마블은 서울 구로구 지타워에서 '지스타 2024 출품작 미디어 시연회 현장. [사진=양태훈 기자] 장현일 넷마블네오 PD는 "워너 브라더스, HBO와 긴 시간 신중하게 협업하며 원작 팬들을 만족시킬 수 있는 게임을 만들었다"고 자신감을 보였다. 이 게임은 원작 드라마의 시즌 4 후반부를 배경으로 한다. 플레이어는 '피의 결혼식'에서 정당한 후계자를 모두 잃은 몰락한 가문의 서자 역할을 맡는다. 장 PD는 "눈과 배고픔밖에 없는 척박한 북구에서 밤의 경비대를 도우며 가문의 생존을 위해 고군분투하는 이야기"라며 "드라마에서 자세히 다루지 못한 이야기와 인물들을 보여줄 것"이라고 설명했다. '왕좌의 게임: 킹스로드'의 가장 큰 특징은 원작의 주 무대인 웨스테로스 대륙을 심리스 오픈 월드로 구현한 것이다. 드라마에 등장한 지역은 물론 나오지 않은 지역까지 철저한 고증을 거쳐 제작했다. 장 PD는 "원거리 공격으로 높은 곳의 물건을 떨어뜨리거나 재배치해 새로운 길과 숨겨진 공간을 찾는 등 다양한 퍼즐 요소도 즐길 수 있다"고 덧붙였다. 전투 시스템도 원작의 사실적인 톤을 살리는 데 중점을 두었다. 장 PD는 "마법이 난무하는 흔한 판타지가 아닌 칼과 도끼 등 현실적 무기를 기반으로 한 전투를 구현했다"고 설명했다. 플레이어는 용병, 기사, 암살자 중 하나의 클래스를 선택할 수 있으며, 각 클래스는 원작 캐릭터들에게서 영감을 받아 개발됐다. 싱글 플레이뿐 아니라 협력 중심의 멀티 플레이도 제공된다. 윈터펠 같은 대형 성에서 다른 유저들과 만나 대화하고 파티를 꾸려 던전에 도전할 수 있다. 일부 필드에서는 다른 유저들과 함께 필드 보스 전투도 가능하다. '몬길: STAR DIVE'는 모바일 게임의 대중화를 이끈 '몬스터 길들이기'의 정통 후속작이다. 8일 넷마블은 서울 구로구 지타워에서 '지스타 2024 출품작 미디어 시연회 현장. [사진=양태훈 기자] 김광기 넷마블몬스터 개발 총괄은 "원작의 세계관과 스토리, 추억의 캐릭터들을 현대적으로 재해석했다"며 "어딘가 부족해 보이는 클라우드, 혈기왕성한 베르나 등 대표 캐릭터들과 새로운 마스코트 야옹이가 펼치는 모험"이라고 소개했다. '몬길: STAR DIVE'는 전작에 비해 전투 시스템을 대폭 강화했다. 김 총괄은 "캐릭터마다 개성 있는 전투 스타일과 역할이 있어 이해도가 높아질수록 더 다양하고 효율적인 전투가 가능하다"며 "원작의 태그 플레이를 계승해 단순한 캐릭터 교체가 아닌 연계 공격과 협력 시스템으로 발전시켰다"고 설명했다. 저스트 회피, 버스트 모드 등 액션성도 강화했다. 보스 몬스터와의 전투에서는 특정 부위 파괴나 속성 활용 등 전략적 플레이가 가능하며, 야옹이와 함께하는 몬스터 포획·길들이기 시스템도 구현했다. 한편 넷마블은 오는 14일부터 17일까지 부산 벡스코에서 열리는 지스타 2024에서 100부스 규모로 두 게임을 선보인다. 170개 시연대를 통해 '킹스로드'의 프롤로그와 '몬길'의 초반 스토리를 체험할 수 있다. 중앙 무대에서는 인플루언서 대전, 버튜버 시연, 코스프레 쇼 등 다양한 이벤트도 진행할 예정이다.   dconnect@newspim.com 2024-11-08 17:01
사진
위례과천선 광역철도 민자적격성 통과 [서울=뉴스핌] 최현민 기자 = 경기 과천시와 서울 강남구, 송파구 일원을 연결하는 위례과천선 사업이 본궤도에 오른다.   국토교통부는 위례과천 광역철도사업이 한국개발연구원(KDI)의 민자적격성 조사를 통과했다고 7일 밝혔다. 위례과천선은 서쪽으로는 정부과천청사, 동쪽으로는 송파구 법조타운과 위례신도시를 연결하고 북쪽으로는 강남구 압구정까지 연결하는 총 연장 28.25km의 광역철도 사업으로 민간투자방식으로 지어진다.  위례과천선 노선도안 [자료=국토부] ※노선 미확정 위례과천선은 제4차 국가철도망 구축계획 반영 후 2021년 12월 '대우건설 컨소시엄'에서 국토부에 최초제안서를 제출했으며 제안서 검토 및 지자체 협의과정을 거쳐 2022년 9월 민자적격성 조사에 착수했다. 민자적격성 조사 과정에서 원자재 가격 급등, 양재첨단물류단지 개발 등 여건 변화가 발생했고 경제성을 최대한 확보하기 위한 사업계획 보완을 거쳐 올해 11월 최종적으로 사업의 타당성을 인정받았다. 특히 본 사업 영향권에 있는 9개 공공주택지구에 총 8만6000명 규모의 입주가 예정돼 있어 신규 철도노선을 통해 선제적으로 교통난을 해소해 나갈 계획이다. 입주 예정 지구는 과천주암 공공지원주택지구, 서울강남 공공주택지구 등이다. 다만 노선안은 아직 확정되지 않았다. 국토부는 세부노선 및 역사는 실시협약 체결 시 확정‧공개할 방침이다.  윤진환 국토부 철도국장은 "내년 전략환경영향평가를 마무리하고 제3자 제안 공고를 통해 우선협상대상자를 선정해 협상까지 착수하는 것을 목표로 속도감 있게 사업을 추진할 계획"이라고 말했다. min72@newspim.com 2024-11-07 17:36
안다쇼핑
Top으로 이동