전체기사 최신뉴스 GAM
KYD 디데이
산업 전기·전자

속보

더보기

[김정호의 4차혁명 오딧세이] 설명 불가능한 인공지능 작동 원리의 비밀

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

인공지능은 암호 숫자 모음

인공지능의 알고리즘 중에서 최근 가장 많이 사용하는 알고리즘이 딥러닝(DNN, Deep Neural Network)이라고 한다. 인간의 뇌 신경망을 모방해서 수학적 모델을 세우고 컴퓨터 코딩으로 구현한다.

 김정호 카이스트 교수

이 딥러닝 신경망은 여러 개의 층(Layer)으로 이루어져 있는데, 그 층 숫자가 증가할수록 성능과 정확성이 높아진다. 그래서 "깊다"라는 의미를 가진 '딥'(Deep)이라는 표현이 나온다. 다른 말로 딥러닝을 심층학습(深層學習)이라고 부르기도 한다. 다량의 데이터나 복잡한 자료들 속에서 핵심적인 내용 또는 기능을 추출해내는 기계학습(Machine Learning) 알고리즘의 일종이다.

기계학습은 큰 틀에서 사람의 사고방식을 컴퓨터에게 가르치는 분야라고 이야기할 수 있다. 이 딥러닝이 성공할 수 있었던 배경에는 컴퓨터와 반도체의 성능향상과 인터넷에 널린 빅데이터의 도움이 결정적이다.

2012년 스탠포드 대학의 앤드류 응 교수와 구글이 함께 한 딥 러닝 프로젝트에서는 1만6000개의 컴퓨터 프로세서와 10억 개 이상의 신경망과 딥러닝을 이용하여 유튜브에 업로드 되어 있는 천만 개 넘는 비디오 중 고양이 인식에 성공하였다.

이 딥러닝에는 입력층(Input layer)과 출력층(Output layer) 사이에 여러 개의 은닉층(Hidden layer)들로 이루어져 있다. 이 딥러닝은 복잡한 비선형 관계(Non-linear relationship)들을 모델링할 수 있다.

뇌의 동작은 비선형적이기 때문이다. 이 딥러닝 알고리즘에는 각 층에 설치된 수천 혹은 수천 만개의 신경세포(Node)가 서로 연결망의 선으로 연결되어 있다. 그리고 이 연결망을 통해서 각 층을 지나면서 출력이 전달될 때, 가중치(w, weight)가 곱해진다. 이때 각 신경세포(Node)에서 입력 값이 합해지게 되는데, 그 합이 일정 값이 넘으면 다음 단계로 출력으로 전달된다. 그래서 딥러닝 신경망에는 수많은 변수(Parameters)가 존재한다. 이러한 변수들은 인공지능이 빅데이터를 이용해 학습하면서 정해간다. 다름 아니라 이 변수들을 정해가는 과정을 학습이라고 한다.

이 학습과정에서 최종 출력 값인 결과와 미리 정해진 정답과 비교하면서 변수를 학습해 간다. 예를 들어 인공지능이 사진을 판독한다면, 입력이 사진이고 최종 출력이 판독이다. 사진을 넣어 주면서 결과를 뽑아 호랑이인지 고양이 인지 판정하게 되는데, 이 과정을 전진방향 전파 학습(Forward Propagation) 이라고 한다. 이 결과에 오차가 생겼을 때, 그 결과의 차이를 보고, 다시 꺼꾸로 변수를 정해가는 과정을 역방향 전파 학습(Back Propagation) 이라고 한다. 이처럼 결과 오류의 차이를 이용해 변수를 정해서 전해간다. 이렇게 답을 알려주면서 학습하는 방법을 지도학습(Supervised Learning) 이라 한다.

이렇게 인공지능에서 학습을 통해서 정해진 변수 값들을 행렬이나 테이블로 쭉 나열해 볼 수 있다. 그런데 놀랍게도 그 숫자들의 의미를 전혀 찾을 수가 없다. 인간에게 단순한 숫자의 나열에 불과하다. 그 숫자의 의미를 찾아 보려고 노력하지만 그 의미를 찾을 수 없다. 그래서 필자는 "설명 가능한 인공지능은 없다"고 말한다.

인공지능 신경망 딥러닝의 구조. 입력층(Input layer), 내부층(Hidden Layer), 그리고 출력층(Output layer)으로 연결망이 이루어져있다. [출처: KAIST]
인공지능 딥러닝 알고리즘에서 전진학습 과정(Forward Propagation)과 가중치 변수(w)들, [출처: KAIST]


인공지능 작동원리, 아직은 설명 가능하지 않아 

미국 국방성 고급 연구기관인 DARPA(Defense Advanced Research Projects Agency)는 방위 고등 연구 계획국의 약자이며, 미국 국방성의 연구, 개발 부문을 담당하고 있다. 인터넷의 원형을 개발한 것으로 잘 알려져 있다. 이 DARPA에서 인공지능을 이해하고 설명해 보려는 프로젝트를 진행하고 있다.

인공지능이 인간을 대신해서 전쟁을 수행하고 공격한다면 인간에게 매우 위협적이다. 핵 무기보다 무섭다. 잘못하면 인류의 종말이 가까이 올 수 있다. 그래서 국방 무기에 인공지능을 적용할 때 많은 우려를 갖는다. 이러한 배경으로 미국 국방부에서는 인공지능을 충분히 신뢰하기 위해서는 인공지능 내부와 결정과정을 이해하고 설명할 수 있어야 한다고 보는 것이다. 그런데 필자는 성공할 수 없는 프로젝트라고 본다.

인공지능은 수많은 데이터로 학습한 이후, 호랑이와 고양이 사진을 구별할 수 있다. 그런데 왜 그런지 인공지능 내부를 설명할 수 없다. 그리고 미래 인공지능은 쌍둥이도 구별하고, 같은 사람이 나이 들어도 알 수 있다. 가족도 찾아 낸다. 화장하더라도 같은 사람을 찾아 낼 수 있다.

이러한 구분은 '인간 아기'가 2~3세만 되어도 호랑이와 고양이 사진을 구별해내는 것과 유사하다. 방향이 돌려지고, 조명이 바뀌어도 찾아 낸다. 그런데 아기가 설명할 수는 없다. 설명할 수 없는 직관으로 찾아 낸다. 그래서 인공지능 내부는 직관이자 블랙박스이다.

인공지능 강화학습(Reinforcement Learning)을 통해서 얻어진 숫자 4x6 행렬(Q 값), [출처: KAIST]


인공지능, 신의 언어일까? 외계인의 언어일까?

인공지능에서 충분한 데이터로 학습하면 내부는 모르지만 입력을 하면 정답이 나오고 최적 값이, 그리고 판정이 나온다. 그래서 필자는 ‘인공지능이 신의 언어 혹은 외계인 언어’일수도 있다고 본다.

당분간 이해하거나 설명하려는 인간의 노력은 무의미하다. 어쩌다 반도체와 컴퓨터가 성능이 발전하고, 데이터가 많아 지면서 알게 된 비밀일 것 같다. 인공지능은 인간과 외계인과의 대화 물꼬를 틀지도 모른다.

4차 산업혁명의 동력인 반도체가 양자역학 원리에 의해서 동작한다. 양자 역학도 불확실성에 기반하고 확률을 구하는 물리이다. 기존 인간의 확정적 경험 세계로는 절대 설명할 수 없다. 그냥 받아 들여야 한다.

양자적 불연속 에너지 현상, 존재의 불확실성, 배타성 (Exclusion Principle) 등은 인간의 실 생활에서 찾아 볼 수 없다. 원자 세계에서만 나타나는 현상이다. 그래서 양자역학과 인공지능 모두 미지의 세계이고 상상의 세계이다. 4차 산업혁명 개념과 실제도 그래서 어렵다. 그 물결을 받아 들이고 파도를 타야 한다.

외계인의 이미지. [출처: 허핑턴포스트코리아 ]

 

joungho@kaist.ac.kr  


[김정호 카이스트 전기 및 전자공학과 교수] 

 

[관련키워드]

[뉴스핌 베스트 기사]

사진
LG전자, 홈로봇 '클로이드' CES 공개 [라스베이거스=뉴스핌] 김아영 기자 = LG전자가 오는 6일(현지시간) 미국 라스베이거스에서 개막하는 세계 최대 가전·IT 전시회 CES 2026에서 홈로봇 'LG 클로이드(LG CLOiD)'를 공개한다고 4일 밝혔다. LG 클로이드는 AI 홈로봇의 역할과 가능성을 보여주는 콘셉트 제품이다. 사용자의 스케줄과 집 안 환경을 고려해 작업 우선순위를 정하고, 여러 가전을 제어하는 동시에 일부 가사도 직접 수행하며 비서 역할을 수행한다. 이번 공개는 '가사 해방을 통한 삶의 가치 제고(Zero Labor Home, Makes Quality Time)'를 지향해온 LG전자 가전 전략의 연장선이라는 것이 회사 측 설명이다. LG 클로이드가 세탁 완료된 수건을 개켜 정리하는 모습. [사진=LG전자] ◆CES서 보여주는 '제로 레이버 홈' 관람객은 CES 전시 부스에서 클로이드가 구현하는 '제로 레이버 홈' 시나리오를 볼 수 있다. 출근 준비로 바쁜 거주자를 대신해 전날 세운 식단에 맞춰 냉장고에서 우유를 꺼내고, 오븐에 크루아상을 넣어 아침 식사를 준비하는 모습 등이 연출된다. 차 키와 발표용 리모컨 등 일정에 맞는 준비물을 챙겨 전달하는 장면도 포함된다. LG 클로이드가 크루아상을 오븐에 넣으며 식사를 준비하는 모습. [사진=LG전자] 거주자가 집을 비운 동안에는 세탁물 바구니에서 옷을 꺼내 세탁기에 넣고, 세탁이 끝난 수건을 개켜 정리하는 시나리오가 제시된다. 청소로봇이 움직일 때 동선 위 장애물을 치워 청소 효율을 높이는 역할도 수행한다. 홈트레이닝 시에는 아령을 들어 올린 횟수를 세어주는 등 거주자의 일상 케어 기능도 시연한다. 이러한 동작은 상황 인식, 라이프스타일 학습, 정교한 모션 제어 능력이 결합돼 구현된다는 설명이다. ◆가사용 폼팩터·VLM·VLA로 최적화 클로이드는 머리와 두 팔이 달린 상체와 휠 기반 자율주행 하체로 구성된다. 허리 각도를 조정해 높이를 약 105cm에서 143cm까지 바꿀 수 있으며, 약 87cm 길이의 팔로 바닥이나 다소 높은 위치의 물체도 집을 수 있다. LG 클로이드가 거주자 위한 식사로 크루아상을 준비하는 모습.[사진=LG전자] 양팔은 어깨 3축(앞뒤·좌우·회전), 팔꿈치 1축, 손목 3축(앞뒤·좌우·회전) 등 총 7자유도(DoF)를 적용해 사람 팔과 유사한 움직임을 구현한다. 다섯 손가락도 개별 관절을 가져 섬세한 동작이 가능하도록 설계됐다. 하체에는 청소로봇·Q9·서빙·배송 로봇 등에서 축적한 휠 자율주행 시스템을 적용해 무게 중심을 아래에 두고, 외부 힘에도 균형을 유지하면서 상체의 정밀한 움직임을 지원한다. 이족보행보다 비용 부담이 낮다는 점도 상용화 측면의 장점으로 꼽힌다. LG 클로이드가 홈트레이닝을 돕는 모습. [사진=LG전자] 머리 부분은 이동형 AI 홈 허브 'LG Q9' 기능을 수행한다. 칩셋, 디스플레이, 스피커, 카메라, 각종 센서, 음성 기반 생성형 AI를 탑재해 언어·표정으로 사용자를 인식·응답하고, 라이프스타일과 환경을 학습해 가전 제어에 반영한다. LG전자는 자체 개발 시각언어모델(VLM)과 시각언어행동(VLA) 기술을 칩셋에 적용했다. 피지컬 AI 모델 기반으로 수만 시간 가사 작업 데이터를 학습시켜 홈로봇에 맞게 튜닝했다는 설명이다. VLM은 카메라로 들어온 시각 정보를 언어로 해석하고, 음성·텍스트 명령을 시각 정보와 연계해 이해하는 역할을 맡는다. VLA는 이렇게 통합된 시각·언어 정보를 토대로 로봇의 구체적인 행동 계획과 실행을 담당한다. 여기에 LG의 AI 홈 플랫폼 '씽큐(ThinQ)', 허브 '씽큐 온'과 연결 가전이 더해지면 서비스 범위가 넓어진다. 예를 들어 가족과 씽큐 앱에서 나눈 메뉴 대화를 기반으로 식단을 계획하고, 날씨 정보와 창문 개폐 상태를 조합해 비가 오면 창문을 닫는 등의 시나리오가 가능하다. 퇴근 시간에 맞춰 세탁·건조를 마치고 운동복과 수건을 꺼내 준비하는 연출도 제시된다. ◆로봇 액추에이터 브랜드 'LG 악시움' 첫 공개 LG전자는 홈로봇을 포함한 로봇 사업을 중장기 성장축으로 보고 조직·기술 강화에 나서고 있다. 최근 조직개편에서 HS사업본부 산하에 HS로보틱스연구소를 신설해 전사에 흩어져 있던 홈로봇 관련 역량을 모으고, 차별화 기술 확보와 제품 경쟁력 제고를 목표로 삼았다. LG 액추에이터 악시움(AXIUM) 이미지. [사진=LG전자] 이번 CES에서는 로봇용 액추에이터 브랜드 'LG 액추에이터 악시움(LG Actuator AXIUM)'도 처음 공개한다. '악시움'은 관절을 뜻하는 'Axis'와 Maximum·Premium을 결합해 고성능 액추에이터를 지향한다는 의미를 담았다. 액추에이터는 모터·드라이버·감속기를 통합한 모듈로 로봇 관절에 해당하며, 로봇 제조원가에서 비중이 큰 핵심 부품이다. 피지컬 AI 확산과 함께 성장성이 높은 후방 산업으로 평가된다. LG전자는 가전 사업을 통해 고성능 모터·부품 기술을 축적해왔다. AI DD 모터, 초고속 청소기용 모터(분당 15만rpm), 드라이버 일체형 모터 등 연간 4,000만 개 이상 모터를 자체 생산하고 있다. 회사는 이 같은 기술력이 액추에이터의 경량·소형·고효율·고토크 구현에 기반이 될 것으로 기대한다. 휴머노이드 한 대에 수십 개 액추에이터가 필요한 만큼, LG의 모듈형 설계 역량도 맞춤형 다품종 생산에 도움이 될 것으로 전망된다. ◆홈로봇 성능·폼팩터 진화 지속…축적된 로봇 기술은 가전에 확대 적용 LG전자는 집안일을 하는 데 가장 실용적인 기능과 형태를 갖춘 홈로봇을 지속 개발하는 동시에 청소로봇과 같은 '가전형 로봇(Appliance Robot)'과 사람이 가까이 가면 문이 자동으로 열리는 냉장고처럼 '로보타이즈드 가전(Robotized Appliance)' 등 축적된 로봇 기술을 가전에도 확대 적용할 계획이다. AI가전과 홈로봇에게 가사일을 맡기고, 사람은 쉬고 즐기며 가치 있는 일에만 시간을 쓰는 AI홈을 만드는 것이 목표다. 백승태 LG전자 HS사업본부장 부사장은 "인간과 교감하며 깊이 이해해 최적화된 가사 노동을 제공하는 홈로봇 'LG 클로이드'를 비롯해 '제로 레이버 홈' 비전을 향한 노력을 지속해 나갈 것"이라고 밝혔다. aykim@newspim.com 2026-01-04 10:00
사진
의대 정시 지원자 5년 만에 최저 [서울=뉴스핌] 정일구 기자 = 올해 의과대학 정시모집 지원자가 큰 폭으로 줄어 최근 5년 중 최저치를 기록했다. 4일 종로학원에 따르면 2026학년도 전국 39개 의대 정시모집 지원자는 7125명으로 전년대비 32.3% 감소했다. 지원자는 2022학년도 9233명, 2023학년도 844명, 2024학년도 8098명, 2025학년도 1만518명으로 집계됐다. 사진은 4일 서울 시내의 한 의과대학 모습. 2026.01.04 mironj19@newspim.com   2026-01-04 15:57
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동