전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 소통 방법

기사입력 : 2019년07월22일 08:00

최종수정 : 2019년08월06일 19:35

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

김정호 교수.

펀치 카드의 추억

필자가 대학 1학년때 배운 컴퓨터 언어가 ‘포트란’이라는 과학기술용 컴퓨터 언어였다. 이러한 컴퓨터 언어란 인간과 컴퓨터의 소통을 가능하게 해주는 도구이다. 그 포트란은 주로 수학과 과학기술 계산에 편리한 컴퓨터 언어였다. 1980년대인 그때 학교에서 포트란 언어를 읽고 실행하는 컴퓨터가 IBM360/380 시리즈로 기억 한다. 그런데 프로그램을 직접 짜면 ‘펀치카드’라는 두꺼운 종이에 구멍이 뚫리는 방식으로 프로그램이 기록이 된다.

지금 생각해 보면 아주 원시적인 기록이며 컴퓨터 입력 방식이다. 타이프 치듯이 프로그램을 입력하면 이 펀치카드 종이에 구멍이 뚫린다. 이렇게 완성된 이 수 십장, 또는 수 백장의 펀치카드 뭉치를 학교 전산실에 제출하고 그 이후 1-2일 후에 계산 결과를 얻는다. 그때 계산 결과는 종이에 숫자 형식의 데이터로 프린트 되어 나온다. 그러니 1980년대초 컴퓨터의 입력은 종이에 구멍이 뚫린 펀치카드였고, 출력은 프린트 용지였다. 종이가 많이 필요했다. 이때 프린트 용지 맨 바깥쪽에는 프린트 기기에 쉽게 연결이 되게 작은 구멍이 아래 위로 쭉 뚫려 있었다. 이 수 백장의 프린트 용지는 추후 전공 관련 수학 수식을 풀때 요긴하게 쓰인 ‘이면지’였다. 종이가 이면지이자 컴퓨터와의 소통 방식이었다.

그런데 한번 포트란 프로그램에서 실수를 하면 몇 일이 지난 후에야 그 결과를 보고, 다시 고치고 입력해야 한다. 디버깅에 시간이 엄청 많이 걸린다. 그래서 프로그램을 짤 때 실수를 최소화해야 한다. 그때 필자는 학교를 전철을 타고 다녔는데, 전철에 앉아 펀치카드에 입력된 프로그램의 오류를 찾기 위해 몇 번이고 다시 검토하고 읽어 보기도 한 기억이 난다. 이처럼 이러한 초기 컴퓨터의 입출력 방식은 수시로 고치고 편집하거나 다시 실행하기 어려웠다. 그리고 종이의 낭비가 심했다고 볼 수 있다. 요즘 말로 ‘copy’, ‘paste’ 가 불가능하다. USB 에 작게 담거나 인터넷으로 파일을 보낼 수도 없다. 그때는 펀치카드 한 개의 박스로 담아 이동했다. 시간과 비용이 많이 드는 소통방식이다.

그 이후 몇 년이 지나 애플 8비트 컴퓨터가 학과에 한 대가 도입이 되었다. 이제는 펀치카드나 프린트 종이 필요 없이 화면을 보고, 프로그램을 편집하고, 입력하고, 그 계산 결과도 바로 화면으로 보았다. 컴퓨터와의 소통에 종이가 사라지기 시작했다. 편집이나 수정은 한 줄, 한 줄 했다. 요즘처럼 화면 전체를 왔다 갔다 하면서 고친 것이 아니라, 한 줄, 한 줄 고쳤다. 그야말로 줄 편집(line editing)이었다. 이 때 사용한 프로그램으로 ‘베이직’이 기억한다. 이후 IBM XT/AT 개인용 컴퓨터가 등장하면서 컴퓨터가 더욱 대중화 되었다. 워드 프로세서도 등장했다. 이제 펀치카드는 사라졌다. 이처럼 컴퓨터가 발전하면서 입력, 출력 장치도, 다르게 말하면 소통 방식도 인간에게 더 편리하게 발전해 왔다. 따라서 인공지능 컴퓨터의 입출력 형태와 소통 방식도, 또 다시 진화할 것으로 기대한다.

인공지능의 입력과 출력

현재 가장 많이 사용되고 있는 대표적인 인공지능 알고리즘이 CNN(Convolution Neural Network)이다. 주로 사진 이미지나 동영상을 판독하고, 이해하는데 사용하는 알고리즘이다. 특히 인터넷과 유튜브에 널린 수많은 사진과 영상 자료가 CNN 학습 데이터가 된다. 이때 컴퓨터가 자동적으로 인터넷에서 읽어서 긁어 모은다. 펀치카드도 필요가 없고 자판기도 필요가 없다. CNN은 이들 사진들을 입력하고, 출력으로는 예를 들어 그 사진 속의 물체를 인식(Classification)하거나 사진(Image) 속의 장면으로 글(Caption)로 쓰거나, 이야기(Text)를 만들 수도 있다. 또는 사진 속의 인물이 다음에 할 행동을 예측(Prediction)하거나 추후 일어날 사건을 예측한다. 또는 화면 속의 상황을 이해(Explain)할 수 있다. 이렇게 CNN의 출력은 ‘Tag(이름), ‘설명문(Caption)’, ‘문학 작품(Text)’이 되기도 한다. 때로는 음성 단어나 스토리로 만들어 출력할 수도 있다. 그리고 더 나아가 그 내용에 맞게 영상도 제작 가능하고, 음악도 창작 가능하고, 그림도 창작 가능하다. 출력으로 창작물을 만들 때 GAN(Generative Adversary Network) 알고리즘이 CNN과 같이 결합될 수 있다. 이 경우 출력은 창작 그림, 시, 문학작품, 음악, 영화도 된다.

입력 ‘사진’을 보고, ‘새’라고 확률(출력)을 제시(Classification)해 주는 CNN의 내부 구조. [출처=KAIST]

인공지능에서 CNN 다음으로 많이 사용하는 알고리즘이 RNN(Recurrent Neural Network)이다. 주로 시간 차이를 두고 순차적으로 입력되는 데이터의 해석과 이를 기초한 미래 예측에 사용된다. 대표적으로 사용하는 말을 알아듣는 인공지능 알고리즘이다. 말은 문법에 따라 순서대로 들어 온다. 그래서 입력의 순서에 따라 의미와 해석이 달라진다. 이 때문에 인공지능이 컴퓨터 내부에서 순차적으로 데이터를 받아 들이고, 순차적으로 학습하고 판단하도록 설계되어 있다. 다른 말로 시간과 순서 개념이 있는 인공지능이다. 그래서 RNN의 입력은 문장 혹은 사람의 말이 된다. 또는 영화의 장면과 장면의 연속이 입력이 될 수 있다.

책 한 권 전체가 RNN의 입력이 될 수도 있다. 그 속에 단어가 순서대로 나열되어 있게 때문이다. 더 나아가 인류가 유사이래 만든 모든 문서, 모든 책이 RNN 의 입력이 될 수 있다. 여기에 전세계 수 백 개 언어의 책과 문서, 녹음 파일 전체가 입력 데이터가 되는 엄청난 분량이 된다. 인공지능 컴퓨터가 책을 모두 쉽고 빠르게 읽는 입력 장치만 개발되면 된다.

전화 상담하면 녹음이 되고, 디지털화되면 그 파일이 바로 RNN의 입력이 된다. 지하철 속에서 주고 받는 대화 모두가 누군가 기록한다면 RNN 입력이 된다. 스마트폰으로 주고 받는 문자와 통화내용도 입력이 된다. 집에 설치된 아마존 인공지능 스피커도 ‘알렉사’도 RNN 입력이 된다. 그래서 CNN의 영상 이미지 이상으로 많은 RNN 입력 데이터가 지구상에 존재한다.

이러한 RNN의 출력은 ‘정답’, ‘독후감’, 설명문’ 또는 ‘다음 문장’이 된다. 입력 데이터를 읽고 이해하고, 그 전체를 요약하거나 문맥을 설명하는 것이 출력도 된다. 또는 그에 해당하는 사진이나 영상을 출력할 수도 있다. 또는 입력 문장에 맞게 음악, 그림, 소설, 영화 등을 창작할 수 있다. 이때는 RNN 과 GAN이 결합해야 한다. 이처럼 RNN의 입력은 문자이나, 녹음, 영상, 책이 되고 출력은 단어, 해설, 또는 창작물이 된다. 이것이 RNN의 소통방식이다.

순서대로 들어오는 입력 문장을 통해 출력으로 해석하거나 단어로 표현하는 RNN 구조. [출처=KAIST]

궁극적인 인공지능의 입출력

결국 인공지능이 사람같이 생각하고, 행동하고 교류하려면 입출력 방식이 인간을 닮은 모습이 아닌가 한다. 결국 인공지능 소통 방식이 인간과 같아야 한다. 그렇게 되면, 인공지능의 입력은 사람처럼 말을 알아 듣고, 눈으로 볼 수 있어야 한다. 그리고 인공지능의 출력은 말을 하거나 글을 쓰거나, 단어로 표현하거나 한 단계 더 나아가, 문장, 소설, 시, 그림, 음악, 영화와 같은 창작물이 될 수 있다. 더 똑똑한 인공지능은 말을 하지 않아도, 문맥이나 표정만 보고 알아서 판단하고 행동을 하면 더 좋다. 궁극적으로 말 끼를 알아듣고, 눈치가 빠른 인공지능이 되어야 한다. 그 때 인공지능은 IQ 뿐만 아니라 EQ 도 좋아 사회성과 도덕성을 가지면 더욱 바람직하다.

미래 자율주행자동차에서는 이런 인공지능의 입출력 방법이 인간과 인공지능 컴퓨터와의 소통과 대화의 방식이 된다. 자율주행자동차의 기능에서 인공지능 자체의 기능도 중요하지만, 인간과의 소통을 위한 입출력 기능도 그에 못지 않게 같이 중요하다. 그래야 완전한 자율주행자동차 시대가 된다. 결국 인공지능이 발전하면서 인공지능의 소통 기술도 함께 발전되어야 한다. 궁극적으로는 소통의 방식은 ‘인간의 모습’을 닮아 간다. 언제인가 인공지능의 소통 방식으로 ‘텔리파시’까지 사용될 수도 있다.

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
트럼프, 韓 4대 그룹 총수들과 골프 [서울=뉴스핌] 송은정 기자 = 도널드 트럼프 미국 대통령이 한국을 비롯한 아시아 주요 기업 총수들과 함께 한나절 동안 '골프 회동'을 진행했다. 글로벌 통상 현안이 산적한 가운데 열린 자리여서 관세와 대미 투자 관련 의견 교환 여부에 관심이 쏠린다. (왼쪽부터)이재용 삼성전자 회장, 최태원 SK 회장, 정의선 현대차 회장, 구광모 LG 회장 [사진=뉴스핌DB] 19일 외신에 따르면 18일(현지시각) 트럼프 대통령은 오전 9시쯤 플로리다주 팜비치의 마러라고 별장을 나와 인근 '트럼프 인터내셔널 골프클럽'으로 이동해 오후 5시쯤까지 라운딩을 즐겼다. 백악관 풀기자단은 "트럼프 대통령이 오전 9시15분 골프장에 도착했다"고 전했다. 이날 행사에는 이재용 삼성전자 회장, 최태원 SK그룹 회장, 정의선 현대차그룹 회장, 구광모 LG그룹 회장, 김동관 한화그룹 부회장 등 한국 주요 대기업 총수들이 참석한 것으로 알려졌다. 일본 소프트뱅크 손정의 회장이 이들을 초청했으며, 일본과 대만 주요 기업인들도 함께 자리했다. 한국의 주요 재벌기업 총수들이 집단적으로 미국의 대통령 및 정·관계 주요 인사들과 함께 골프를 즐긴 것은 사상 유례가 없는 일이다. 통상 4인 1조로 진행되는 아마추어 골프 경기에서 트럼프 대통령이 누구와 한 조를 이뤘는지는 알려지지 않았다. 백악관은 풀기자단의 확인 요청도 거부했다. 골프장 입구는 경호원들에 의해 외부인의 접근이 차단됐다. 골프장 주변도 높은 나무로 빽빽이 둘러싸여 내부 확인은 어려웠던 것으로 알려졌다. 트럼프 대통령이 한국 기업인들과 동반 라운딩을 하지 않았더라도 경기 전후 또는 점심시간이나 휴식시간 등을 활용해 대화를 나눴을 가능성이 있다. 이 자리에서 반도체·자동차·배터리·조선 등 분야에서 이들 기업의 대미 투자 및 관세에 대한 의견이 오갔을지에 대해 관심이 쏠리고 있다. 한편 마러라고 별장 일대에서는 경찰이 기자와 시민의 접근을 통제하며 "VIP들이 있다"며 경계태세를 유지한 것으로 전해졌다. yuniya@newspim.com 2025-10-19 10:00
사진
김세영, 고향 땅에서 '5년만의 통산 13승' [서울=뉴스핌] 박상욱 기자 = '빨간 바지의 마법사'가 화려한 금의환향 퍼포먼스를 보여줬다. 고향 팬들과 가족의 열렬한 응원을 받은 김세영(31·메디힐)이 고향 땅에서 와이어 투 와이어로 천금 같은 우승 트로피를 들어올렸다. 2020년 11월 펠리컨 챔피언십 이후 5년이라는 긴 침묵을 깨고 LPGA 통산 13승을 기록했다. 한국은 올 시즌 6승과 함께 7명째 LPGA 우승자를 배출했다. 김세영은 19일 전남 해남군 파인비치 골프링크스(파72·6785야드)에서 열린 미국여자프로골프(LPGA) 투어 BMW 레이디스 챔피언십 최종일 4라운드에서 5언더파 67타를 적어내 최종 합계 24언더파 264를 기록, 단독 2위 하타오가 나사(일본)를 4타 차로 따돌리고 정상에 올랐다. 24언더파는 대회 72홀 최저타 신기록이다. 우승 상금 34만 5000달러(약 4억9000만원)를 보태 통산 1518만 달러의 상금을 쌓아 로레나 오초아(멕시코)를 제치고 역대 상금 10위에 올랐다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 우승 트로피를 들고 포즈를 취하고 있다. [사진=LPGA] 이날 4타 차 선두로 출발한 김세영은 초반 불안한 출발을 보였다. 3번 홀에서 짧은 파 퍼트를 놓치며 1번 홀에서 버디를 잡은 노예림에게 2타 차까지 쫓겼다. 그러나 5~7번 홀에서 3연속 버디를 잡아 추격자들의 의지를 꺾었다. 이어 9번 홀(파4)에서 버디를 추가하며 2위와 4타 차로 벌려 우승 가능성을 높였다. 후반에는 추격자들이 타수를 줄이지 못하au 단독 2위 경쟁을 하는 사이 김세영은 편안하게 타수를 지켜가며 우승을 굳히는 상황으로 진행됐다. 후반 첫 4개 홀을 파로 지나간 김세영은 14, 15번 홀에서 버디를 보태 2위로 치고 올라온 셀린 부티에(프랑스)와 6타 차까지 벌려 사실상 우승을 확정했다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 챔피언 퍼트를 넣은 뒤 기뻐하고 있다. [사진=LPGA SNS동영상 캡처] 해남 옆동네인 전남 영암군에서 태어난 김세영은 한국 국적 선수로는 2021년 고진영 이후 4년 만에 이 대회 챔피언에 올랐다. 2019년에 시작한 BMW 레이디스 챔피언십은 2023년까지 한국 선수 혹은 한국계 선수들이 우승컵을 가져갔다. 2019년 장하나, 2021년 고진영, 2022년 리디아 고(뉴질랜드), 2023년 이민지(호주)가 우승했고 지난해엔 호주의 해나 그린이 이 대회 최초로 한국 또는 한국계 선수가 아닌 우승자로 이름을 남겼다. 2025 BMW 레이디스 챔피언십 우승자 안세영. [사진=LPGA] 김세영은 2015년 LPGA 투어에 데뷔해 3승을 거두며 신인상을 수상했다. 이후 2020년까지 매년 우승 트로피를 들어 올렸다. 2019년에는 3승을 쓸어 담았고 2020년에는 메이저 대회인 KPMG 위민스 PGA 챔피언십 우승을 포함해 2승을 달성하며 올해의 선수상까지 거머쥐었다. 특히 김세영은 2018년 7월 손베리 크리크 클래식에서 31언더파(63-65-64-65, 257타)로 우승하며 남녀 통틀어 72홀 역대 최저타 및 최다 언더파 신기록을 세웠다. 이전 기록은 LPGA 애니카 소렌스탐의 27언더파, PGA 어니 엘스의 30언더파였다. 한국 선수들은 이날 대약진했다. 김아림이 이날 6타를 줄이며 공동 3위에 올랐고 안나린과 최혜진은 무려 9타씩 줄여 나란히 공동 7위에 랭크됐다. 김효주와 이소미가 공동 10위에 자리해 한국 선수 6명이 톱10에 진입했다. 고진영도 8타를 줄여 고교생 아마추어 오수민과 함께 공동 19위로 순위를 크게 끌어 올렸다. LPGA 투어 BMW 레이디스 챔피언십 대회 중 은퇴 기념 케이크를 선물 받은 지은희(가운데). [사진=LPGA] 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 캐디로 나선 최나연. [사진=LPGA] 19년 LPGA 투어 생활을 마감하는 은퇴 무대로 이번 대회에 공동 24위로 마친 지은희는 9번 홀에서 현역 마지막 퍼트를 버디로 장식하며 갤러리들의 뜨거운 박수 갈채를 받았다. 루키 윤이나는 3타를 줄이는 데 그쳐 공동 24위로 톱10 진입에 실패했다. 2023년 은퇴한 최나연은 이번 대회에서 이정은5의 캐디로 나서 눈길을 끌었다. psoq1337@newspim.com 2025-10-19 16:10
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동